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NMR STUDIES OF DRUGS. APPLICATIONS OF ACHIRAL AND
CHIRAL LANTHANIDE SHIFT REAGENTS TO MEDETOMIDINE.

OBSERVATIONS OF "ANOMALOUS SHIFTS."

Key Words: LSR, Europium, Eu(FOD)5, Eu(HFC);,
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ABSTRACT

The 60 MHz 'H NMR spectra of the potent,
selective and specific a,-adrenoceptor agonist,
medetomidine, have been studied in CDCl; at 28+1° for
the racemic free base, 1, with the added achiral
lanthanide shift reagent (LSR), tris(6,6,7,7,8,8,8~

*To whom correspondence should be sent at John Jay
College
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heptafluoro-2,2-dimethyl-3,5~-
octanedionato)europium(III), 2, for spectral
simplification, and with the chiral LSRs, tris[3-
(heptafluoropropylhydroxymethylene)-(+) -
camphorato]europium(IIX), 3, and tris{3-
(trifluoromethylhydroxymethylene) - (+) -
camphoratoj]europium(III), 4, for potential
enantiomeric shift differences. Substantial
lanthanide-induced shifts (LIS) were observed with
each added LSR, consistent with LSR binding at the
basic imidazole nitrogen. The three LSRs géve
distinctly aifferent LIS results for the NH signal,
with substantial "anomalous" (upfield) shifts
observed with 2 and smaller anomalous shifts produced
with 3, at low [LSR]:[1l] ratios; normal downfield
shifts resulted at higher LSR levels of 2 or 3. With
LSR 4, only consistent "normal" downfield shifts were
seen for the NH signal.
INTRODUCTION

The compound medetomidine appears to be a novel,
potent, specific and selective a,~adrenoceptor
agonist with activity as a sedative, analgesic, or
anxiolytic in various animal species (1-6). The
racemic compound, 1, has been resolved into the
enantiomers (1,7,8) and the (+)-dextro enantiomer
appears to possess nearly all of the a,-agonistic
activity (1,5). Crystal structures were determined
for the hydrochloride salt of racemic 1 (2) as the
hydrate or anhydrous forms, and the crystal structure
and absolute configurations for dexmedetomidine (the
dextro enantiomer of 1) and its tosyl derivative were
determined (8). The (+)-enantiomer of 1 was assigned
the § configuration (8).
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For some time, we have been interested in the
use of lanthanide shift reagents (LSR) for NMR
spectral simplification, and, with chiral LSR, for
potential direct determinations of enantiomeric
excess (% e.e.) of chiral compounds. These subjects
have been reviewed (9-12). Since 1 provided the
opportunity to study LSR binding in an intriguing
substrate with the 4-arylalkyl imidazole heterocyclic
structure, we proceeded to examine the 60 MHz 'H NMR
of 1 with the achiral LSR, tris (6,6,7,7,8,8,8-
heptafluoro-2,2-dimethyl-3,5-octanedionato)europium-
(I1I), 2, known as Eu(FOD),, and with the chiral
LSRs, tris[3-(heptafluoropropylhydroxymethylene)-(+)-
camphorato]europium(III), 3, known as Eu(HFC),; or
Eu(HFBC)4, and tris[3-
(trifluoromethylhydroxymethylene) - (+) ~
camphorato]europium(III), 4, known as Eu(FACAM), or
Eu (TFC) 4.

EXPERIMENTAL

Samples of the racemic free base of 1 were
kindly provided by Orion Corporation, Orion-Farmos,
FIN-90650 Oulu, Finland. Chloroform-d and shift
reagents were obtained from Aldrich Chemical Corp.,
Milwaukee WI 53201. Materials were used as received
except as noted. CDCl; was dried and stored over 3A
molecular sieves; LSR reagents were stored in a

desiccator over P,0,. For runs with shift reagents,
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accurately weighed portions of drug were added to
weighed solvent in an NMR sample tube and dissolved
by shaking. Increments of solid LSR were added
directly to the sample, dissolved by shaking, and the
spectra immediately obtained using a Varian EM360A 60
MHz NMR spectrometer with EM3630 lock/spin decoupler
accessory. Probe temperature was 28+1°.
Tetramethylsilane (TMS, ca. 1%) was used as internal
reference at 0.00 ppm. Chemical shifts are believed
accurate to *0.05 ppm and coupling constants to 0.2
Hz.
RESULTS AND DISCUSSION

The racemic free base medetomidine, 1, 0.364

molal in CDCl,, displayed the following 'H spectrum
(6 in ppm relative to TMS at 0.00 ppm): 1.53, 3H, d
(33 ~ 6.7 Hz), CH,CH; 2.21, 3H, s, aryl 3-methyl;
2.14, 3H, s, aryl 2-methyl; 4.33, 1H, q (37 ~ 6.7
Hz), methine CHCH;; 6.97, 3H, approx. s, aryl H-
4,5,6; 6.62, 1H, s, imidazole H-5; 7.21, 1H, s,
imidazole H-2; 12.33, 1H, slightly broad s, NH. The
imidazole protons H-2 and H-5 are assigned based on
expected lower field shifts for H-2, flanked by two
electronegative nitrogen atoms, than for H-5,
adjacent to only one nitrogen, N-1 (13). The two
methyl groups at C-2 and C-3 of the benzene ring are
assigned based on lanthanide~induced shift (LIS)
magnitudes with added LSR (see below). The lowest
field resonance, of the imidazole N-1 hydrogen,
appeared slightly concentration dependent. Thus, a
less concentrated solution of 1, 0.296 molal,
displayed the NH absorption at higher field, i.e.,
11.70 ppm. This is consistent with the expectation
of a more deshielded signal resulting from more
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hydrogen-bonding with higher concentration of 1 (14).
Addition of increments of Eu(FOD);, 2, to 0.364 molal
1 resulted in the induced shirts summarized in Figure
1. The NH absorption exhibited an "anomalous"
(upfield) shift over the 2:1 molar ratio range from
zero to 0.177, with the NH appearing at 11.21 ppm at
the latter molar ratio. This represents a
substantial A§ of 1.1 ppm to higher field for the NH
signal. All the remaining (carbon-bound) proton
resonances exhibited the normal downfield shifts
expected with tris-B-diketonate LSRs derived from
europium(III)} in low-polarity organic solvents (15).
With 2:1 ratios above 0.177, the NH signal begins to
move rapidly downfield and broadens dramatically. At
the highest 2:1 ratios examined, 0.658, the three
benzene ring protons, H-4,5,6, which are essentially
isochronous for unshifted 1 (at 60 MHz), are
resolved, with H-6 moving downfield fastest.

With additions of the chiral Eu(HFC);, 3, to
0.296 molal 1, LIS values were observed, summarized
in Figure 2. The NH signal displayed small anomalous
shifts over the 3:1 molar ratio range from zero
(11.70 ppm) to 0.0648 (11.50 ppm), an upfield shift
of only ca. 0.2 ppm. With 3:1 ratios of 0.115 or
more, normal downfield shifts were seen for the NH.
No discernible enantiomeric shift differences, AAS§,
were seen for the doublet CH,CH signal (directly
attached to the chiral center of 1) or for the
imidazole protons (close to the expected lanthanide
binding site). Under the experimental conditions
employed here, AA§ for the aryl H-6 signal could not

be confirmed due to limitations imposed by signal-to-
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Figure 1. Variation of chemical shifts (6, ppm) for
nuclei of 1 with molar ratio of [Eu(FOD) ]}:[1l].
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Figure 2. Variation of chemical shifts (6, ppm) for
nuclei of ) with molar ratio of [Eu(HFC);]:[1].
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noise ratio (S/N) and lanthanide-induced line
broadening.

With the addition of the chiral LSR, 4,
Eu(FACAM),, to 0.306 molal

elicited as summarized in Figure 3. No AAS§ was

1, induced shifts were
observed with 4 under ocur conditions. In contrast to
results with 2 or 3, no anomalous shifts were seen
for the NH resonance with added 4. Thus,
significantly different behavior appears for the NH
signal with each of these three LSRs, ranging from
appreciable anomalous shift magnitudes (with 2), to
modest magnitudes (with 3), to exclusive "normal”
shifts (with 4). Anomalous shifts may be accounted
for by geometric factors, for example, reflecting the
angular part of the pseudocontact (dipeclar) term in
the simplified McConnell-Robertson equation (16),
depending on the geometry in the bound complex of
substrate with lanthanide. The changeover from
anomalous upfield shifts to normal downfield shifts
at higher LSR levels may reflect changing
contributions from bound complexes of differing
stoichiometry or geometries (e.g., different
conformations) with the different LSRs; such effects
may be subtle. Alternatively or additionally, some
Fermi contact (through-bond) contribution (15,17) may
be invoked, particularly in the case of the
quadrupolar N nuclei in the substrate, 1, with the
nucleus displaying the anomalous shift being attached
to nitrogen and proximal to the presumed LSR binding
site. The differences in the NH anomalous shifts
with three superficially similar europium(III) LSRs
was unexpected. We also note that the carbon-bound
imidazole protons, H-2 and H-5, broaden considerably
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Figure 3. Variation of chemical shifts (§, ppm) for
nuclei of 1 with molar ratio of [Eu(FACAM);]:[1).

even at lower levels of LSR, while the NH absorption
exhibits sudden and substantial broadening only at
the higher LSR levels. In part, these results may
reflect exchange-broadening effects due to NH
exchange and tautomerization of the imidazole ring,
as well as the possible contributions of two
different bound complexes with LSR bound either to N-
1 or N-3 in the two possible tautomers of 1. Some
potential effects of exchange rate of ammonium NH
protons were considered for the NMR of etidocaine
hydrochloride in €DCl; (18), and for
exchange/tautomerization in the 4,5-dihydro-1H-
imidazole, lofexidine (19) (with added LSR).

In Table 1 we have shown the unnormalized

("raw") slope values for the different protons of

=
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with 2, 3 or 4, in addition to normalized slope
values relative to slopes of 1.0 assigned for the
lines calculated from resonances assigned to the
methine CH. These slopes reflect the data of Figs.
1-3. The methine signal was selected for referencing
for two reasons: a) the LIS magnitudes for the CH
proton were the largest for any proton in 1 (with the
exception of the imidazole ring protons) so that
experimental errors due to chemical shift
uncertainties should be relatively small; and b)
since the methine CH is not directly on the imidazole
ring and is not conjugated with the ring, it can
probably be safely assumed that the LIS for the
methine results almost exclusively from pseudocontact
(dipolar) shifts with negligible contributions to the
LIS from any Fermi contact shifts (17,20,21). Except
for the NH signal, even the unnormalized slope values
for the nuclei of 1 are qualitatively similar with
all three LSRs, consistent with a strongly
coordinating substrate that exhibits little
selectivity in binding to the different LSRs, as
expected for a basic imidazole functionality. The
large slope magnitudes for the imidazole ring’s
carbon-bound protons confirm lanthanide coordination
at this heterocyclic ring and support high binding
constants between 1 and each LSR. If the normalized
slope values are compared, agreement appears
excellent between all three LSRs for all protons
{other than imidazole ring protons) with the
normalized slopes varying by less than +0.1 from 2 to
3 to 4. On a relative basis, excellent agreement is
also obtained for the imidazole H-5; only the
imidazole H-2 shows moderate variations of the



03: 44 30 January 2011

Downl oaded At:

MEDETOMIDINE 389

carbon-bound protons. Possible Fermi contact shift
contributions and geometric (angular) factors for the
NH and imidazole H-2 seem to be the most likely
explanation (11,17). If proton tautomerization
occurs between N-1 and N-3, rendering both nitrogens
available for lanthanide binding, the imidazole H-2
would be proximal to coordinated europium in both of
the possible bound complexes, whereas H-5 is
similarly close only if europium binds at N-1. The
slightly greater normalized slopes seen for imidazole
H-2 versus H-5 may reflect preferential LSR binding
at N-3 or may be consistent with comparable binding
at both nitrogens.

Assignments for the aryl H-4,5,6 protons and for
the aryl 2-methyl vs. 3-methyl were based on larger
normalized slopes expected for the aryl H-6 and 2-
methyl protons, based on proximity to LSR bound on
the imidazole moiety.

For the NH resonance, slopes were calculated
with both low and high LSR levels to evaluate regions
of anomalous (upfield) shifts with 2 or 3 (where
slopes were negative) as well as regions of normal
downfield shift; only the low molar ratio levels were
used for slope calculations with 4 since anomalous
shifts were not seen in this case. Rather good
correlation coefficients (R values) were generally
obtained using 3-6 experimental points for the line
equations. Thus, for 2, R=1.00 was obtained for all
nuclei except NH at high LSR levels (R = 0.99, 2:1
ratios from 0.27-0.66) and aryl H-6 (R=0.99). With
3, R values were 1.00 except for NH (R=0.97 for 3:1
ratios from 0-0.02; R=0.99 for ratios 0.19-0.44);
imidazole H-2 and aryl 2-methyl (R=0.99); aryl H-4,5
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and aryl 3-methyl (R=0.98). Smaller LIS magnitudes
leading to greater experimental errors presumably
cause the poorer correlations of the aryl H-4,5 and
aryl methyls, reflecting their remote locations,
distal to bound lanthanide. R values of 1.00 were
attained for all slopes with 4. Slopes were
generally calculated for the steepest parts of the
curves at low [LSR]:[1] molar ratios, before any
apparent "leveling off" could be seen; these molar
ratios were usually less than ca. 0.2 and indicate
"most positive" slope values (except for NH with 2 or
3). Overall, a high degree of isostructurality in
the bound complexes of 1 with the three LSRs is
implied. Relatively large slope magnitudes for aryl
H-6 vs. aryl 2-methyl suggests gualitative agreement
with the conformation reported for the crystal free
base of dexmedetomidine (8), in which the aryl H-6 is
directed back towards the imidazole moiety and the
aryl methyls are directed away. In addition, the
slope for the aryl H-6 is greater than for the
doublet methyl protons although the H-6 proton is one
bond further from bound lanthanide.
CONCLUSIONS

The 60 MHz 'H NMR spectra of racemic
medetomidine free base, 1, in CDCl; solution, have
been studied with the added LSRs, Eu(FOD),, 2:
Eu(HFC),, 3; and Eu(FACAM),, 4. The lanthanide-
induced shifts for each hydrogen of 1 are presented,
together with the normalized relative slopes for the
plots of chemical shift versus [LSR}:[1] molar ratio,
based on least squares line fitting. Notable
differences with the three LSRs are seen with respect
to LIS behavior for the NH resonance, with 2 causing
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substantial anomalous (upfield) shifts and 3 causing
smaller anomalous shifts, with low [LSR]:[1] molar
ratios. With [LSR]):[1] ratios above ca. 0.1-0.2,
both 2 and 3 cause considerable downfield shifts for
the NH signal. In contrast, 4 elicits exclusive
downfield shifts of the NH resonance over the entire
range of LSR levels studied. Substantial lanthanide-
induced line broadening of the imidazole H-2 and H-5
occurs, starting even with low LSR levels. The NH
absorption more abruptly broadens, at moderate or
higher LSR levels. Possible chemical exchange
broadening associated with NH exchange and resulting
altered LSR binding sites on the imidazole tautomers
may be involved. No useful enantiomeric shift
differences were seen with the chiral LSRs, 3 or 4.
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